A mixture of local and quadratic approximation variable selection algorithm in nonconcave penalized regression
نویسندگان
چکیده
منابع مشابه
Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملA Connection Between Variable Selection and EM-Type Algorithms
Variable selection is fundamental to high-dimensional statistical modeling. Fan and Li (2001) proposed a class of variable selection procedures via nonconcave penalized likelihood. Optimizing the penalized likelihood function is challenging as it is a highdimensional nonconcave function with singularities. A new algorithm is proposed for finding a solution of the nonconcave penalized likelihood...
متن کاملPenalized Estimating Functions and Variable Selection in Semiparametric Regression Models.
We propose a general strategy for variable selection in semiparametric regression models by penalizing appropriate estimating functions. Important applications include semiparametric linear regression with censored responses and semiparametric regression with missing predictors. Unlike the existing penalized maximum likelihood estimators, the proposed penalized estimating functions may not pert...
متن کاملVariable selection for recurrent event data via nonconcave penalized estimating function.
Variable selection is an important issue in all regression analysis and in this paper, we discuss this in the context of regression analysis of recurrent event data. Recurrent event data often occur in long-term studies in which individuals may experience the events of interest more than once and their analysis has recently attracted a great deal of attention (Andersen et al., Statistical model...
متن کاملBootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data
Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées
سال: 2013
ISSN: 1638-5713
DOI: 10.46298/arima.1962